Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675219

RESUMO

The ABCG2 transporter plays a key role in pharmacological and toxicological processes, affecting bioavailability, tissue accumulation and milk secretion of its substrates. This protein is expressed in several biological barriers acting as a protective mechanism against xenobiotic exposure by pumping out a broad range of compounds. However, its induced expression during lactation in alveolar cells of mammary gland represents a relevant route for active transport of unwanted chemicals into milk. This work aimed to characterize the involvement of ABCG2 in systemic exposure and milk secretion of the flukicide nitroxynil. Using MDCK-II cells overexpressing the transporter, we showed that nitroxynil is an in vitro substrate of different species variants of ABCG2. Moreover, using wild-type and Abcg2-/- mice, we showed that murine Abcg2 clearly affects plasma levels of nitroxynil. We also reported differences in nitroxynil accumulation in several tissues, with almost 2-fold higher concentration in kidney, small intestine and testis of Abcg2-/- mice. Finally, we proved that nitroxynil secretion into milk was also affected by Abcg2, with a 1.9-fold higher milk concentration in wild-type compared with Abcg2-/- mice. We conclude that ABCG2 significantly impacts nitroxynil biodistribution by regulating its passage across biological barriers.

2.
Environ Toxicol Pharmacol ; 107: 104421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493880

RESUMO

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Leite , Tiabendazol , Animais , Feminino , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lactação , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tiabendazol/química , Tiabendazol/metabolismo , Xenobióticos , Cães
3.
Front Vet Sci ; 10: 1268658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929285

RESUMO

In veterinary field, drug exposure during milk production in dairy cattle is considered a major health problem which concerns dairy consumers. The induced expression of the ABC transporter G2 (ABCG2) in the mammary gland during lactation plays a significant role in the active secretion of many compounds into milk. The main objective of this study was to determine the involvement of ABCG2 in the secretion into milk of the antiparasitic clorsulon in sheep as well as the possible effect of the coadministration of model ABCG2 inhibitors such as macrocyclic lactones on this process. Cells transduced with the ovine variant of ABCG2 were used to carry out in vitro transepithelial transport assays in which we showed that clorsulon is a substrate of the ovine transporter. In addition, ivermectin and abamectin significantly inhibited clorsulon transport mediated by ovine ABCG2. In vivo interactions were studied in Assaf sheep after coadministration of clorsulon (in DMSO, 2 mg/kg, s.c.) with ivermectin (Ivomec®, 0.2 mg/kg, s.c.) or abamectin (in DMSO, 0.2 mg/kg, s.c.). After ivermectin and abamectin treatment, no relevant statistically significant differences in plasma levels of clorsulon were reported between the experimental groups since there were no differences in the area under the plasma concentration-curve (AUC) between clorsulon treatment alone and coadministration with macrocyclic lactones. With regard to milk, total amount of clorsulon, as percentage of dose excreted, did not show statistically significant differences when macrocyclic lactones were coadministered. However, the AUC for clorsulon significantly decreased (p < 0.05) after coadministration with ivermectin (15.15 ± 3.17 µg h/mL) and abamectin (15.30 ± 3.25 µg h/mL) compared to control group (20.73 ± 4.97 µg h/mL). Moreover, milk parameters such as half-life (T1/2) and mean residence time (MRT) were significantly lower (p < 0.05) after coadministration of macrocyclic lactones. This research shows that the milk pharmacokinetics of clorsulon is affected by the coadministration of ABCG2 inhibitors, reducing drug persistence in milk.

4.
Toxicol Lett ; 380: 23-30, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011773

RESUMO

ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.


Assuntos
Praguicidas , Masculino , Feminino , Animais , Ovinos , Humanos , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Praguicidas/toxicidade , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carneiro Doméstico/metabolismo , Proteínas de Neoplasias/metabolismo
5.
Antimicrob Agents Chemother ; 67(5): e0009523, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37078871

RESUMO

Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk. The aim of this work was to determine the role of ABC transporter G2 (ABCG2) in clorsulon secretion into milk and the effect of ivermectin, a known ABCG2 inhibitor, on this process. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we report that clorsulon was transported in vitro by both transporter variants and that ivermectin inhibited its transport mediated by murine Abcg2 and human ABCG2. Wild-type and Abcg2-/- lactating female mice were used to carry out in vivo assays. The milk concentration and the milk-to-plasma ratio were higher in wild-type mice than in Abcg2-/- mice after clorsulon administration, showing that clorsulon is actively secreted into milk by Abcg2. The interaction of ivermectin in this process was shown after the coadministration of clorsulon and ivermectin to wild-type and Abcg2-/- lactating female mice. Treatment with ivermectin had no effect on the plasma concentrations of clorsulon, but the milk concentrations and milk-to-plasma ratios of clorsulon decreased in comparison to those with treatment without ivermectin, only in wild-type animals. Consequently, the coadministration of clorsulon and ivermectin reduces clorsulon secretion into milk due to drug-drug interactions mediated by ABCG2.


Assuntos
Anti-Helmínticos , Animais , Feminino , Humanos , Camundongos , Anti-Helmínticos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ivermectina/farmacologia , Lactação , Proteínas de Neoplasias/genética
6.
J Pineal Res ; 74(2): e12849, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562106

RESUMO

The ATP-binding cassette G2 (ABCG2) is an efflux transporter expressed in the apical membrane of cells from a large number of tissues, directly affecting bioavailability, tissue accumulation, and secretion into milk of both xenobiotics and endogenous compounds. The aim of this work was to characterize the role of ABCG2 in the systemic distribution and secretion into milk of melatonin and its main metabolites, 6-hydroxymelatonin, and 6-sulfatoxymelatonin. For this purpose, we first showed that these three molecules are transported by this transporter using in vitro transepithelial assays with MDCK-II polarized cells transduced with different species variants of ABCG2. Second, we tested the in vivo effect of murine Abcg2 in the systemic distribution of melatonin and its metabolites using wild-type and Abcg2-/- mice. Our results show that after oral administration of melatonin, the plasma concentration of melatonin metabolites in Abcg2-/-  mice was between 1.5 and 6-fold higher compared to the wild-type mice. We also evaluated in these animals differences in tissue accumulation of melatonin metabolites. The most relevant differences between both types of mice were found for small intestine and kidney (>sixfold increase for 6-sulfatoxymelatonin in Abcg2-/-  mice). Finally, melatonin secretion into milk was also affected by the murine Abcg2 transporter, with a twofold higher milk concentration in wild-type compared with Abcg2-/-  lactating female mice. In addition, melatonin metabolites showed a higher milk-to-plasma ratio in wild-type mice. Overall, our results show that the ABCG2 transporter plays a critical role in the biodistribution of melatonin and its main metabolites, thereby potentially affecting their biological and therapeutic activity.


Assuntos
Lactação , Melatonina , Feminino , Camundongos , Animais , Lactação/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
7.
Res Vet Sci ; 153: 88-91, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36327623

RESUMO

The ATP-binding cassette transporter G2 (ABCG2) is an efflux protein involved in the bioavailability and secretion into milk of several compounds including anti-inflammatory drugs. The aim of this work was to determine the effect in sheep of an ABCG2 inhibitor, such as the macrocyclic lactone ivermectin, on the secretion into milk of meloxicam, a non-steroidal anti-inflammatory drug widely used in veterinary medicine, and recently reported as an ABCG2 substrate. In vitro meloxicam transport assays in ovine ABCG2-transduced cells have shown that ivermectin is an efficient inhibitor of in vitro transport of meloxicam mediated by ovine ABCG2, with a 75% inhibition in the transport ratio (24.85 ± 4.62 in controls vs 6.31 ± 1.37 in presence of ivermectin). In addition, the role of ovine ABCG2 in secretion into milk of meloxicam was corroborated using Assaf lactating sheep coadministered with ivermectin. Animals were administered subcutaneously with meloxicam (0.5 mg/kg) with or without ivermectin (0.2 mg/kg). No difference in plasma pharmacokinetic parameters was found between treatments. In the case of milk, a significant reduction in the area under concentration-time curve (AUC) (3.92 ± 0.66 vs 2.26 ± 1.52 µg·h/mL) and the AUC milk-to-plasma ratio (0.17 ± 0.03 vs 0.09 ± 0.06) was reported for ivermectin-treated animals compared to controls.

8.
Antimicrob Agents Chemother ; 66(7): e0006222, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736132

RESUMO

Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.


Assuntos
Albendazol , Anti-Helmínticos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Albendazol/farmacologia , Animais , Anti-Helmínticos/farmacologia , Feminino , Humanos , Lactação , Mamíferos , Camundongos , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
9.
Biochem Pharmacol ; 175: 113924, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217099

RESUMO

ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 µg·h/ml versus 73.80 ± 10.00 µg·h/ml). Differences in meloxicam distribution were reported for several tissues after oral and intravenous administration, with a 20-fold higher concentration in the brain of Abcg2-/- after oral administration. Meloxicam secretion into milk was also affected by the transporter, with a 2-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice after oral and intravenous administration. We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Anti-Inflamatórios não Esteroides/metabolismo , Meloxicam/metabolismo , Leite/metabolismo , Distribuição Tecidual/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Administração Intravenosa , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Masculino , Meloxicam/administração & dosagem , Meloxicam/sangue , Camundongos , Camundongos Knockout , Leite/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...